Virtual Stress Testing of Regenerating Bone in Tibia Fractures

Presentation by: Joseph L. Petfield, MD
Co-authors: Matthew Kluk, MD; Emily Shin, MD; Husain Bharmal, MD; Paul Hoffman, BS; Tony Keaveny, PhD; Wade Gordon, MD; Wesley Jackson, PhD; Joseph R. Hsu, MD; Leon Nesti, MD, PhD; Garry Hayeck, PhD

1Department of Orthopaedics and Rehabilitation, San Antonio Military Medical Center
2Department of Orthopaedic Surgery, Walter Reed National Military Medical Center
3Department of Mechanical Engineering, University of California, Berkeley
4Department of Orthopaedic Surgery, Carolinas Medical Center
5O. N. Diagnostics, Berkeley, CA
Disclosure

• The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

• This study was conducted under a protocol reviewed and approved by the Brooke Army Medical Center Institutional Review Board and in accordance with the approved protocol.

• All patient photographs are used with permission.

• Department of Defense Research Grant, Award Number W81XWH-10-2-0079

• Wesley Jackson, PhD: Henry M. Jackson Foundation
• Paul Hoffmann, BD: Employee, O.N. Diagnostics, L.L.C.
• Garry Hayeck, PhD: Previous Employee, O.N. Diagnostics, L.L.C.

• Presenting Author: No disclosures
Introduction

• Musculoskeletal injuries
 • nearly 2/3 of combat wounds (54-65%)

• Comminuted, open fractures of lower extremity long bones

• Clinical Decision:
 • Limb Salvage
 • Amputation

Introduction

• Limb Salvage: Circular external fixation
 • Early Weight Bearing
 • Infection
 • Soft tissue management
• Long-Term care plan
 • Fixator removal
• Clinical event → Amputation vs. Continued Limb Salvage
• Assessment of Bone healing
 • Variable, Subjective

Variability in the Assessment of Fracture-Healing in Orthopaedic Trauma Studies

By Luis A. Corrales, MD, Saam Monshedi, MD, MPH, Mohit Bhandari, MD, MSc, FRCSC, and Theodore Miclau III, MD

“We found a lack of consensus with regard to the definition of fracture healing”

Introduction

- Virtual Stress Testing
 - 3 Dimensional Imaging
 - Biomechanical Principles
- Finite Element Analysis
 - Quantitative assessment
- Other applications:
 - Osteoporosis
 - Spinal fusions

Virtual Stress Testing can be applied to tibia fractures to identify patients who will experience a “clinical event” (re-fracture, malunion, need for surgical revision) if their fixation hardware were removed.
Methods

• Retrospective review of military beneficiaries
 • San Antonio Military Medical Center
 • Walter Reed National Military Medical Center
• Surgical Database search
• Military patients who had undergone surgical treatment of a fractured tibia with a circular external fixator
 • CT scan of their fracture 2-4 weeks prior to removal or dynamization of their fixation device
Methods

• Clinical Course
• Clinical Event?
 • Refracture
 • Progressive malunion
 • Retightening
 • Unanticipated bone grafting
• CT scans → Virtual stress test
Methods

• Patient-specific finite element models
• Virtual stress testing of applied loads:
 • Axial Compression
 • Bending
 • Area of failed tissue
• Statistical analysis
Results: Patient Demographics

- 66 included patients
 - Mean age 28.8 years
 - 65 male
 - 95% Open fractures (63/66)
 - 36% tobacco use (24 patients)
- Mean time in frame: 274 days
- 17 complications:
 - 5 Deep infection
 - 10 Osteomyelitis
 - 2 Ring breakage

defense.gov/photos
Results

- Patients with clinical events: 11 (16.7%)
 - 6 progressive malunions
 - 4 unanticipated bone graft
 - 1 refracture
- Virtual stress test data
 - Percent Area of Failed Tissue
 - Axial Compression
Results

- Patients with clinical events: 11 (16.7%)
 - 6 progressive malunions
 - 4 unanticipated bone graft
 - 1 refracture
- Virtual stress test data
 - Percent Area of Failed Tissue
 - Axial Compression
Results

- Bone strength/body weight

BMI = 36

- or + Successful removal
- or + Clinical Event
Test Performance

- Sensitivity: 82% (9/11)
- Specificity: 76% (42/55)
- Positive predictive Value: 41% (9/22)
- Negative predictive value: 95% (42/44)
- Cohen’s Kappa: 0.416 ± 0.11

<table>
<thead>
<tr>
<th></th>
<th>Clinical Event</th>
<th>Successful Removal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCT Positive</td>
<td>9</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>BCT Negative</td>
<td>2</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

• 16% Rate of clinical events
 • Keeling et al: 5/38 (13%)
 • Atesalp et al: 14/163 (8.5%)
• Identified 9 of 11 clinical events
• Cost effectiveness
• Mental toll of treatment failure

Limitations
• Retrospective
 • Objective outcome
• Military patients
 • 100% Captured, High-demand
• Small number
 • Multicenter grant application

Conclusion

Refinement of CT-derived virtual stress testing and eventual application into clinical decision making at the time of frame removal may improve outcomes and reduce morbidity
Thank you